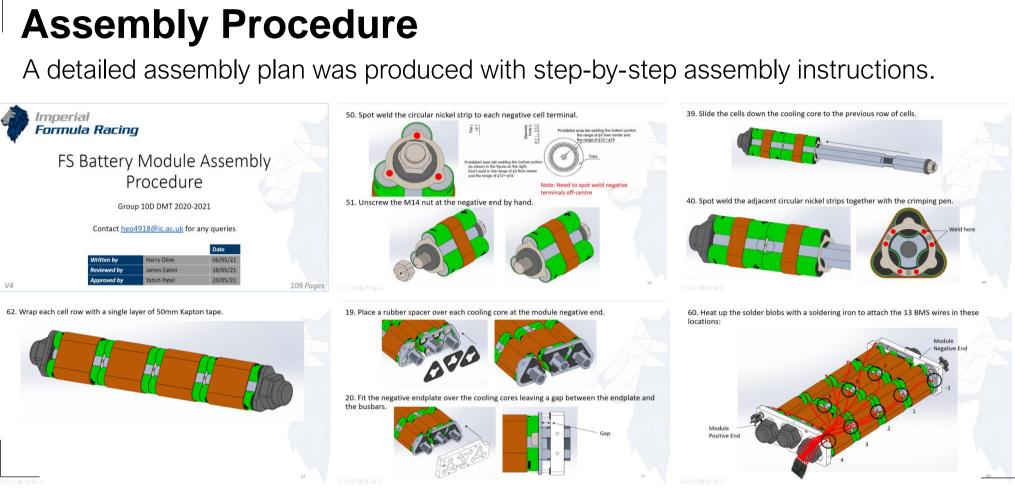
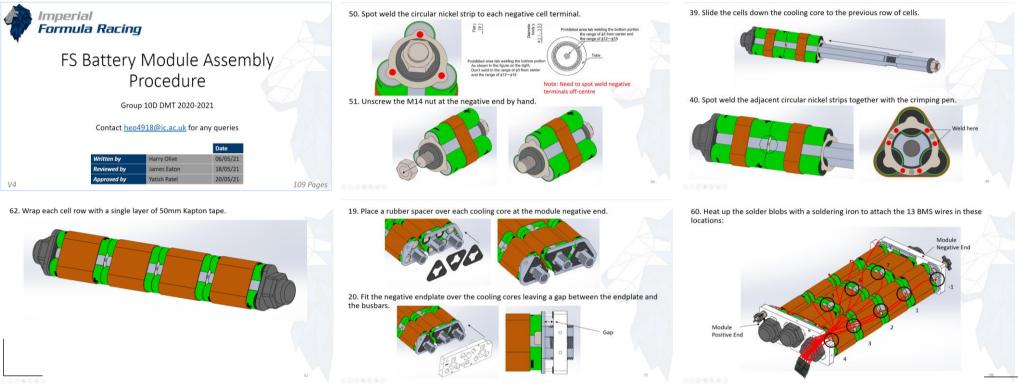
Imperial College London

Design. Make. Test. of an optimised Formula E Student Battery Module

Group 10D: Leo Michel-Grosjean, Harry Olive, Manmohan Malik, Umair Arif Supervised by: Dr. Yatish Patel, Mr. James Eaton

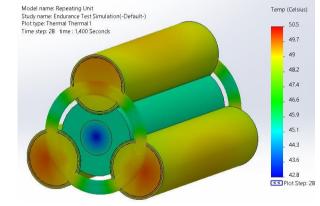

DESIGN

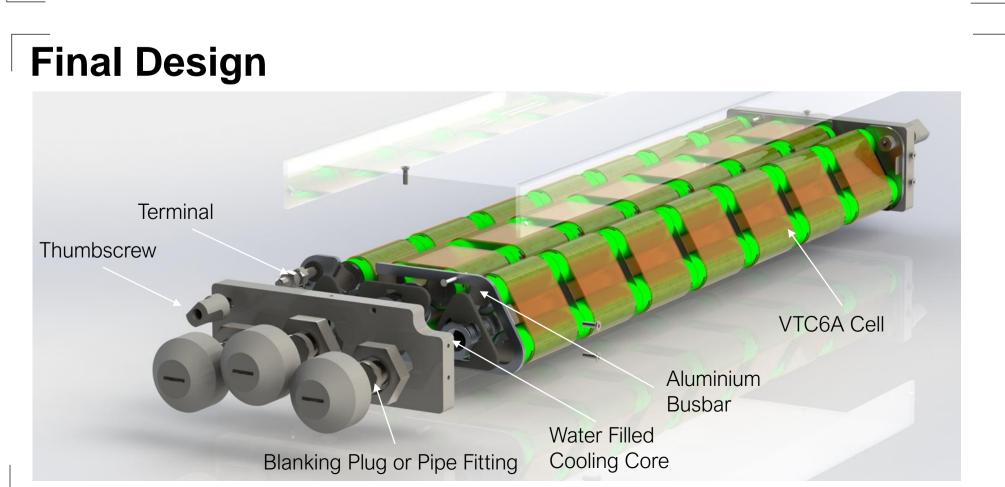

Product Design Specification

After analysis on performance requirements and Formula Student regulations, a detailed product specification was made. This included calculating the capacity from first principles and selecting the design max power, optimizing lap time sensitivities.

Aspect	Objective	Source	Verification	
	Pack Performance			
Peak Power	Max pack power < 80kW	FSUK Rule EV 2.1.1	Pulse Test	
Operating Voltage Range	Pack must operate between 12V and 700V to integrate with motor controller	Bamocar-D3 datasheet	Design for Optimum Voltage	
Pack Energy	Minimum 5.49 kWh	Section 2.2	1C Discharge	
	Layout and configuration			
Pack Volume	a di	EV21 Chassis Constraint	From CAD volume evaluation	
	Pack Components			
Cells	All type of cells are allowed, except Molten Salt Cells, Thermal Batteries, and Fuel Cells	FSUK Rule EV 5.2.1	Cell Selection	
Module	Each module within the pack must have a maximum static voltage below 120 V DC and maximum energy of 6 MJ	FSUK Rule EV 5.3.2	Design to value with safety factor and test	
Cell weight	To improve upon the previous design, we aim to select a cell and an optimum configuration of mass maximum 27kg	Target	Iterate cell selection and	
Module Structural	To improve upon previous module we aim to design a module	Target	concepts to optimum	
Weight	lighter than the current one (i.e. < 1.75kg)	raiget		
	Mechanical			
Module attachment	The inter-module mechanism must withstand vibrations caused by car.	FSUK Rule	Vibration Rig Test	

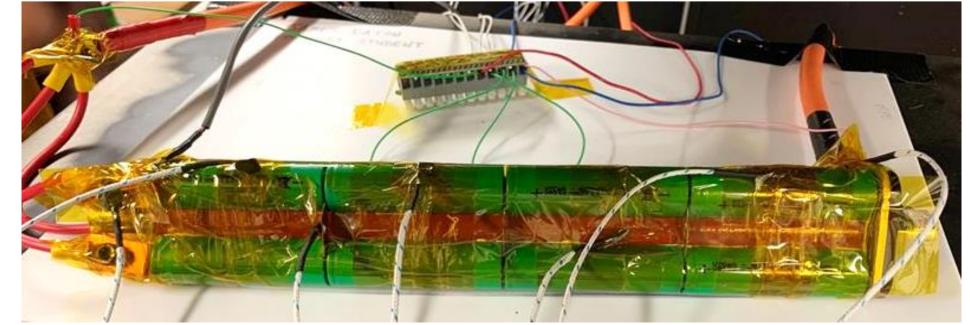
Fasteners	All fasteners must be metric grade 8.8 or higher and include positive locking mechanisms. T 10.2.2 states all the approved mechanisms	FSUK Rule EV 5.5.11	Design Review			
	Electrical					
ectrical integration	Ensure new design is compatible with electric circuitry being designed including the battery management system	Target	Design Review			
ctrical Configuration	Module Terminal must be electrically separable without the use of tools	FSUK Rule T 13.1.6	Inspection			
	The maximum permitted voltage between any two electrical connections is 600 V DC	FSUK Rule EV 4.1.1	FSUK Rule EV 4.1.1 Testing			
sulation and Wiring	All insulation and wiring must be rated to the max tractive system	FSUK Rule EV 4.5.2,				
	(TS) voltage and a temperature of 85°C	EV 4.5.3, EV 5.4.7	Design Review			
	Modules must be electrically insulated from one another	FSUK Rule EV 5.4.6	Inspection			
Safety						
Separation	Each module must be separated from others with vertical insulating walls of equivalent strength to 0.9mm thick steel or 2.3mm thick aluminium	FSUK Rule EV 5.5.4	Design Review			
Fire Safety	All container materials must be fire retardant to UL94-V0	FSUK Rule EV 5.5.3	Design Review			
Thermal						
rating temperature & measurement	Cell temperature must be < 60°C BMS must monitor temperature of at least 30% of thermally critical cells	FSUK Rule EV 5.8.2, EV 5.8.4	Cycling Pack Testing w Thermistors			
Production						
Cost	The cost of this project is not to exceed GBP 1000 for the first iteration unless more funding is applied for	Target	BoM and Cost of Manufacturing & Procure			
Quality Standard						
Design Standard	Drawings must meet BS 8888 and IRG design requirements	Internal Requirement	Assessed			




Cell Selection for Power and Mass Optimization

Our first mission was to select the best cell for our application, as the smallest length scale we could have an impact on. This involved populating an extensive cell spreadsheet whereby data sheet characteristics were processed considering pack level characteristics such as mass, capacity and power to best satisfy our PDS. From here, we used a search algorithm to mass optimize the configurations of the most promising cells and selected the Murata VTC6A.

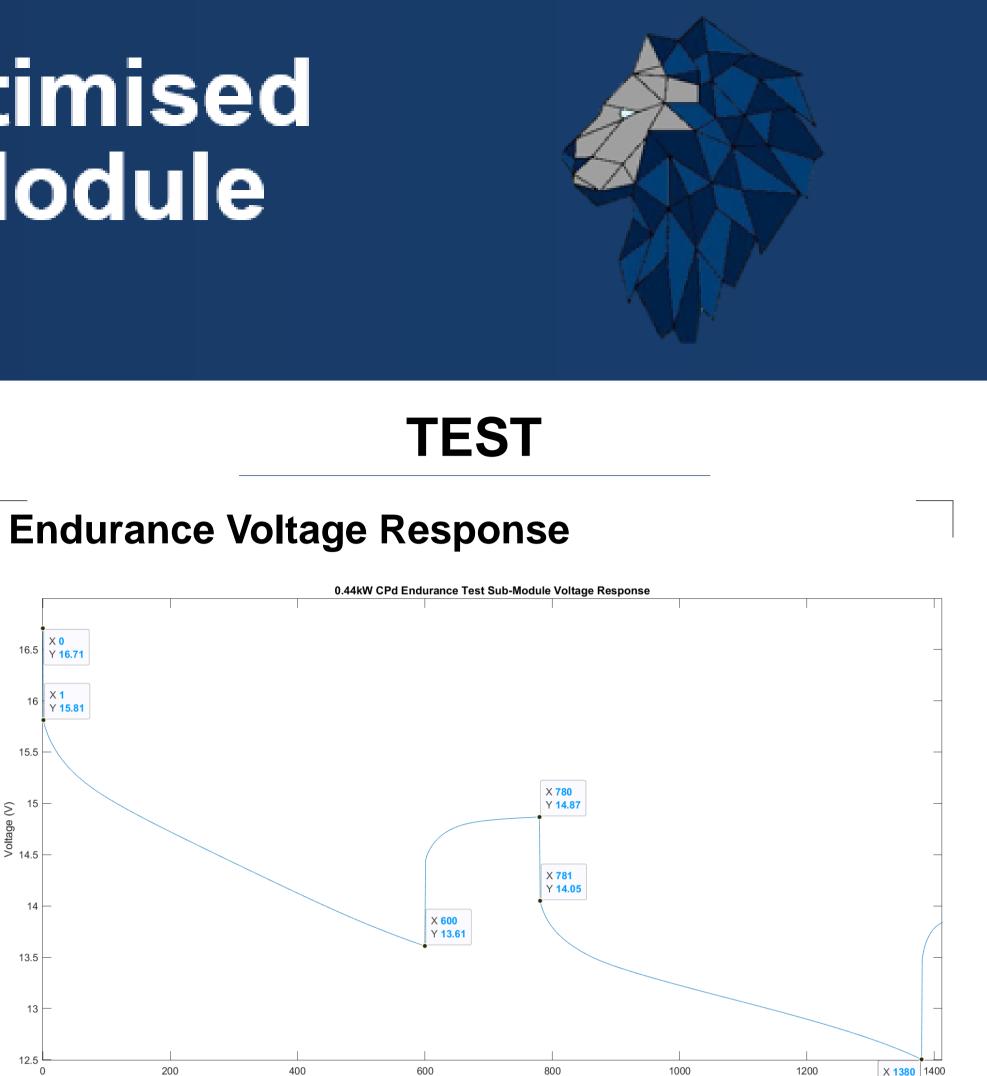
Thermal Management & Modelling



From cell testing, we were able to model the internal resistance as a function of Temperature and State of Charge so that its corresponding heat generation would accurately represent the observed surface temperature of our selected cell. This model was implemented into thermal FEA serving as a powerful design tool to iterate for the most suitable thermal management system. Our final design uses grooved Aluminium tubes filled with water as an effective passive cooling method.

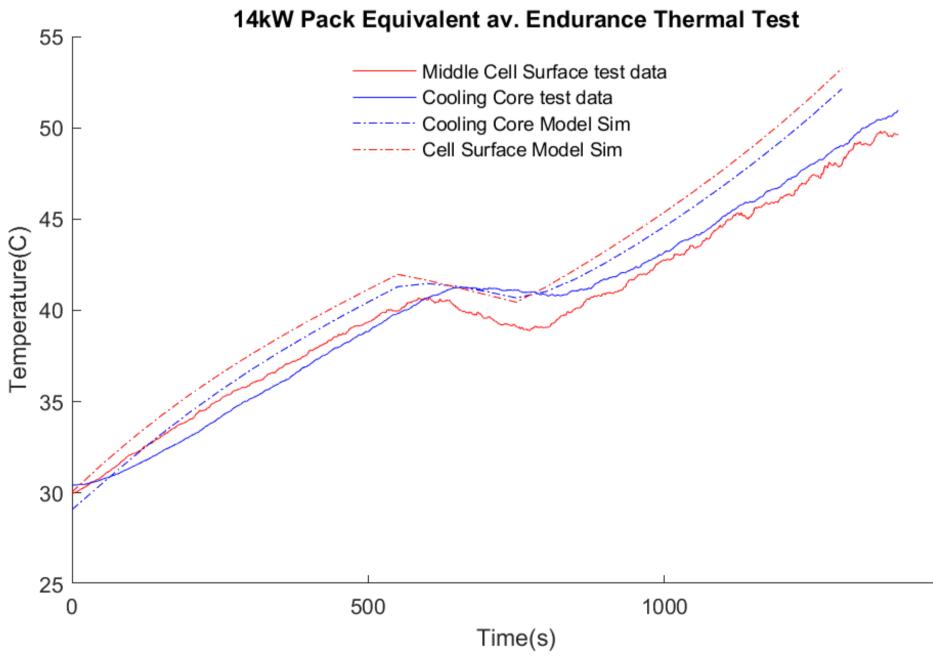
Department of Mechanical Engineering

All three sub-modules were assembled but due to spotwelding issues with Aluminium busbars the full module assembly was not completed. Instead, a sub-module was tested but this preserved most of the test data required to evaluate. The most important test prepared included a complete realistic endurance discharge cycle on a vibrations rig at a pack equivalent discharge power of 14kW which was demonstrated to be the max expected average power needed for endurance, the single most straining event on the battery. Due to software failure, however, only a 14kW CP test was performed.


MAKE

Parts Review

With all the parts procured, a complete dry assembly was attempted prior to official assembly with electrical connections. All parts fit together with ease.



Sub-Assembly & Test Set-up

The module design proves successful as its thermal and electrical response comply to the PDS. This can be observed by noticing that the sub-module completes the scaled 14kW CP 1400s. This satisfying as we did not know how our design capacity would be affected by the ohmic overpotential. This is because it was difficult to accurately predict the internal resistance in the assembly. We observe an initial voltage drop of approximately 0.9V with initial current of 27.8A corresponding to an internal resistance characterization of $32m\Omega$.

Thermal Response & Model Predictions

1500

2020 - 2021